For suppose that g(p) = i. Then f(p, i) = 0, and for any $j < i, f(p, j) \neq 0$. Since A represents f in Q, we have

$$\vdash_{\mathcal{O}} A(\mathbf{p}, \mathbf{i}, \mathbf{o}),$$
 and (if $i > 0$), (i)

$$\vdash_{\mathcal{Q}} - A(\mathbf{p}, \mathbf{o}, \mathbf{o}),$$
 (o)

$$\vdash_{Q} : A(\mathbf{p}, \mathbf{i} - \mathbf{x}, \mathbf{o}). \tag{i-i}$$

(o), ..., (i-1), and 14.11 entail that

$$\vdash_{\mathcal{O}} \forall w (w < i \rightarrow -A(p, w, 0)),$$
 (i+1)

which, together with (i), entails that $\vdash_O B(p, i)$.

We must show that $\vdash_Q \forall x_{n+1}(B(\mathbf{p}, x_{n+1}) \to x_{n+1} = \mathbf{i})$. Assume $B(\mathbf{p}, x_{n+1})$, i.e., $A(\mathbf{p}, x_{n+1}, \mathbf{o}) \& \forall w (w < x_{n+1} \to -A(\mathbf{p}, w, \mathbf{o}))$. From (i) and

$$\forall w(w < x_{n+1} \rightarrow -A(\mathbf{p}, w, \mathbf{o})), \text{ we have } -\mathbf{i} < x_{n+1}.$$

From $A(\mathbf{p}, x_{n+1}, \mathbf{0})$ and (i+1), we have $-x_{n+1} < \mathbf{i}$. Thus by 14.13 we have $x_{n+1} = \mathbf{i}$. Sof $\forall x_{n+1} (B(\mathbf{p}, x_{n+1}) \to x_{n+1} = \mathbf{i})$.

Exercises

14.1 Verify the following assertion: all recursive functions are representable in the theory ('R') whose language is L and whose theorems are the consequences in L of the following infinitely many sentences:

i + j for all i, j such that i + j;

i+j=k for all i, j, k such that i+j=k;

 $\mathbf{i} \cdot \mathbf{j} = \mathbf{k}$ for all i, j, k such that $i \cdot j = k$;

 $\forall x (x < i \rightarrow x = 0 \vee ... \vee x = i - 1) \text{ for all } i;$

and $\forall x (x < i \lor x = i \lor i < x)$, for all i.

14.2 Show that none of the following sentences are theorems of Q:

- (a) $\forall xx \neq x'$,
- (b) $\forall x \forall y \forall z x + (y + z) = (x + y) + z$,
- (c) $\forall x \forall y x + y = y + x$,
- $(d) \forall x \mathbf{0} + x = x,$
- ((e) $\forall x x < x'$,
- (f) $\forall x \forall y (x < y & y < x),$
- (g) $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$,
- $(h) \forall x \forall y x \cdot y = y \cdot x,$
- (i) $\forall x \circ \cdot x = 0$,
- (i) $\forall x \forall y \forall z x \cdot (y+z) = x \cdot y + x \cdot z$.

Hint: Let a and b be two objects that are not natural numbers, and consider the following successor, addition, and multiplication tables:

3¢	oc'	7+	j	а	ь	7.	0	$j \neq 0$	а	b	
i	i'	i	i+j	ь	а	o i ≠ o a b	0	o	a	b	
a	а	a	a	b	a	$i \neq 0$	0	$i \cdot j$	a	b	
b	b	ь	b	b	a	a	0	b	b	b	
(e) P						b	0	а	а	a	